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Introduction: All graphs in this paper are finite 
and directed. The direction of the edge is from vi 
to vj iff f(v i) ˂ f(vj). Let G = (V, E) be the graph 
with  V = p and  E  = q. Here we label the  
vertices with first p-1 whole numbers and edges 
with a linear function. Here we proved that direct 
path, direct middle graph of a path, direct total 
graph of a path, direct duplicate graph of a path, 
direct two tuple graph of a path, direct Z – graph 
of a path, direct shadow graph of a path and 
direct splitting graph are di linear prime labeled 
graphs.       
All definitions, figures and basic results are taken 
from [1], [2],[3] and [4].  

Definition 1.1 Let G be a graph with p vertices 
and q edges. The greatest common divisor of the 
labels of the edges incident on a vertex is defined 
as the greatest common incidence number(gcin) 
of that vertex.   
Definition  1.2 If each edge of a graph  has a 
direction, then the graph is called di graph 
Definition  1.3 The number of edges incident on 
a vertex in a di graph is called the in degree of  
that vertex. 
Main Results 
Definition 2.1  A di graph G with p vertices and 
q edges is said to admit linear prime labeling if it 
satisfy the following three conditions: 
1. Vertices are labeled with first p-1 whole 

numbers. 
2. Edges are labeled with sum of the label of the 

initial vertex of the edge and twice the label 
of the terminal vertex of the edges. 
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3. Greatest common incidence number of each 
vertex of in degree greater than one is one. 

Definition 2.2 A di graph which admits linear 
prime labeling is called linear prime di graph. 
Theorem 2.1 Direct path Pn (n >2) admits linear 
prime labeling.  
Proof: Let G = Pn and let v1,v2,---,vn are the 
vertices of G. 
Here |V(G)|   =  n and  |E(G)|  = n-1. 
Define a function f : V  {0,1,2,---,n-1} by  

    f(vi) = i-1 , i = 1,2,---,n 
Clearly f is a bijection. 

 is defined as follows 
)=  3j-1,   1 ≤ j ≤ n-1 

Clearly  is an injection. 
In degree of each vertex is less than 2. 
Hence Pn , admits  linear  prime labeling. 
Example 2.1 G = P5. 

 
fig – 2.1 

Theorem 2.2 Direct middle graph of Path Pn (n 
>2) admits linear prime labeling. 
Proof: Let G = M{Pn} and let v1,v2,---,v2n-1 are 
the vertices of G. 
Here |V(G)|   =  2n-1 and  |E(G)|  = 3n-4. 
Define a function f : V  {0,1,2,---,2n-2} by  

    f(vi) = i-1 , i = 1,2,---,2n-1 
Clearly f is a bijection. 

 is defined as follows 
) = 6j-4,    1 ≤ j ≤ n-1. 
) = 6j-1,   1 ≤ j ≤ n-1. 
) = 6j+1,   1 ≤ j ≤ n-2. 

Clearly  is an injection. 
gcin of (v2j+2)    
      =  gcd of { ), )} 
      =  gcd of {6j+1, 6j+2}  
     =  1,     1 ≤ j ≤ n-2. 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence M{Pn}, admits  linear prime labeling. 
Example 2.2 G = M(P4). 

 
fig – 2.2 

Theorem 6.2.3 Direct total graph of Path Pn (n 
>2) admits linear prime labeling. 
Proof: Let G = T{Pn} and let v1,v2,---,v2n-1 are 
the vertices of G. 
Here |V(G)|   =  2n-1 and  |E(G)|  = 4n-5. 
Define a function f : V  {0,1,2,---,2n-2} by  

    f(vi) = i-1 , i = 1,2,---,2n-1 
Clearly f is a bijection. 

 is defined as follows 
)  =  6j-4,   1 ≤ j ≤ n-1. 

) =  6j-2,  1 ≤ j ≤ n-1. 
)  =  6j-1,  1 ≤ j ≤ n-1. 
)  =  6j+1, 1 ≤ j ≤ n-2. 

Clearly  is an injection. 
gcin of (v2j+2)    
=  gcd of { ), )} 
=  gcd of {6j+1, 6j+2}  
=  1,      
   1 ≤ j ≤ n-2. 
gcin of (v2j+1)    
=  gcd of { ), )} 
=  gcd of {6j-2, 6j-1}  
=  1,      
   1 ≤ j ≤ n-1. 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence T{Pn}, admits  linear prime labeling. 
Example 2.3 G = T(P4). 

 
fig – 2.3 
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Theorem 6.2.4 Direct duplicate graph of path Pn 
(n > 2) admits linear prime labeling.  
Proof: Let G = D{Pn} and let v1,v2,---,v2n are the 
vertices of G. 
Here |V(G)|   =  2n and  |E(G)|  = 2n-2. 
Define a function f : V  {0,1,2,---,2n-1} by  

    f(vi) = i-1 , i = 1,2,---,2n 
Clearly f is a bijection. 

 is defined as follows 
)  =  6j-1,  1 ≤ j ≤ n-1 

) =  6j,  1 ≤ j ≤ n-1 
Clearly  is an injection. 
In degree of each vertex is less than 2. 
Hence Pn , admits  linear  prime labeling. 
Example 2.4 G = D{P4}. 
 

 
fig – 2.4 

Theorem 2.5 Direct 2- tuple graph of path Pn (n 
> 2) admits linear prime labeling.  
Proof: Let G = T2(Pn) and let v1,v2,---,v2n are the 
vertices of G. 
Here |V(G)|   =  2n and  |E(G)|  = 3n-2. 
Define a function f : V  {0,1,2,---,2n-1} by  

    f(vi) = i-1 , i = 1,2,---,2n 
Clearly f is a bijection. 

 is defined as follows 
)  =  6j-4,   1 ≤ j ≤ n. 

) =  6j-2,   1 ≤ j ≤ n-1 
)  =  6j+1   1 ≤ j ≤ n-1. 

Clearly  is an injection. 
gcin of (v2j+2)    
=  gcd of { ), )} 
=  gcd of {6j+1, 6j+2}  
=  1,      
    1 ≤ j ≤ n-1 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence T2(Pn)  , admits  linear  prime labeling. 

Example 2.5 G = T2(P4). 

 
fig – 2.5 

Theorem 2.6 Direct Z- graph of path Pn (n > 2) 
admits linear prime labeling.  
Proof: Let G = Z(Pn) and let v1,v2,---,v2n are the 
vertices of G. 
Here |V(G)|   =  2n and  |E(G)|  = 3n-3. 
Define a function f : V  {0,1,2,---,2n-1} by  

    f(vi) = i-1 , i = 1,2,---,2n 
Clearly f is a bijection. 

 is defined as follows 
) =  6j-2,   1 ≤ j ≤ n-1 

)  =  6j-1   1 ≤ j ≤ n-1. 
)  =  6j+1   1 ≤ j ≤ n-1. 

Clearly  is an injection. 
gcin of (v2j+1)    
=  gcd of { ), )} 
=  gcd of {6j-2, 6j-1}  
=  1,     1 ≤ j ≤ n-1. 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence Z(Pn), admits  linear  prime labeling. 
Example 2.6 G = Z(P4). 

 
fig – 2.6 
Theorem 2.7 Direct shadow graph of path Pn (n 
> 2) admits linear prime labeling.  
Proof: Let G = D2(Pn)} and let v1,v2,---,v2n are 
the vertices of G. 
Here |V(G)|   =  2n and  |E(G)|  = 4n-4. 
Define a function f : V  {0,1,2,---,2n-1} by  
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    f(vi) = i-1 , i = 1,2,---,2n 
Clearly f is a bijection. 

 is defined as follows 
) =  6j-2,   1 ≤ j ≤ n-1. 

)  =  6j-1   1 ≤ j ≤ n-1. 
) =  6j,   1 ≤ j ≤ n-1. 

)  =  6j+1   1 ≤ j ≤ n-1. 
Clearly  is an injection. 
gcin of (v2j+1)    
=  gcd of { ), )} 
=  gcd of {6j-2, 6j-1}  
=  1,     1 ≤ j ≤ n-1. 
gcin of (v2j+2)    
=  gcd of { ), )} 
=  gcd of {6j, 6j+1}  
=  1,     1 ≤ j ≤ n-1. 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence D2(Pn) admits  linear  prime labeling. 
Example 2.7 G = D2(P4) 

 
fig – 2.7 

Theorem 2.8 Direct splitting graph of path Pn (n 
> 2) admits linear prime labeling.  
Proof: Let G = Ś(Pn) and let v1,v2,---,v2n are the 
vertices of G. 
Here |V(G)|   =  2n and  |E(G)|  = 3n-3. 
Define a function f : V  {0,1,2,---,2n-1} by  

    f(vi) = i-1 , i = 1,2,---,2n 
Clearly f is a bijection. 

 is defined as follows 
)  =  6j-1,   1 ≤ j ≤ n-1. 

) =  6j,   1 ≤ j ≤ n-1. 
)  =  6j+1,  1 ≤ j ≤ n-1. 

Clearly  is an injection. 
gcin of (v2j+2)    
=  gcd of { ), )} 
=  gcd of {6j, 6j+1}  
=  1,     1 ≤ j ≤ n-1. 
So, gcin of each vertex of in degree greater than 
one is 1. 
Hence Ś(Pn) admits  linear  prime labeling. 
Example 2.8 G = Ś(P4) 

 
fig – 2.8 
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