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Abstract: Linear prime labeling of a graph is the labelirfghe vertices with {0,1,2---,p-1} and the
direct edges with twice the value of the terminattex plus value of the initial vertex. The greates
common incidence number of a vertgki() of in degree greater than one is defined as thategst
common divisor of the labels of the incident ede¥ the gcin of each vertex of in degree greater
than one is one, then the graph admits linear pribelind®. Here we investigate some path related di
graphs for linear prime labeling.
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Introduction: All graphs in this paper are finite Definition 1.1 Let G be a graph with p vertices
and directed. The direction of the edge is fram v and q edges. The greatest common divisor of the
to v iff f(vi) < f(v;). Let G = (V, E) be the graph labels of the edges incident on a vertex is defined
with |V |=p and|E | = q. Here we label the as the greatest common incidence nungwén}
vertices with first p-1 whole numbers and edgesof that vertex.

with a linear function. Here we proved that direct Definition 1.2 If each edge of a graph has a
path, direct middle graph of a path, direct total direction then the graph is called di graph

graph of a path, direct duplicate graph of a pathDefinition 1.3 The number of edges incident on
direct two tuple graph of a path, direct Z — grapha vertex in a di graph is called the in degree of
of a path, direct shadow graph of a path andhat vertex.

direct splitting graph are di linear prime labeled Main Results

graphs. Definition 2.1 A di graph G withp vertices and
All definitions, figures and basic results are take ( edges is said to admit linear prime labeling if i
from [1], [2],[3] and [4]. satisfy the following three conditions:

1. Vertices are labeled with first p-1 whole

For Correspondence:
spalazhi@yahoo.com.

Received on: May 2018

Accepted after revision: July 2018
Downloaded from: www.johronline.com

numbers.

2. Edges are labeled with sum of the label of the
initial vertex of the edge and twice the label
of the terminal vertex of the edges.
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3. Greatest common incidence number of eact

vertex of in degree greater than one is one.
Definition 2.2 A di graph which admits linear
prime labeling is called linear prime di graph.
Theorem 2.1 Direct path B (n >2) admits linear
prime labeling.
Proof: Let G = R and let y,v,,---,v, are the
vertices of G.
Here |V(G)| nand |E(G)| =n-1.
Define a function f : V= {0,1,2,---,n-1} by

f(v)=i-1,i=1,2,---,n

Clearly f is a bijection.
fiz1 is defined as follows
ﬁ:ﬂ[?‘?i U;‘+1): 3j-1,
Clearly f;;, is an injection.
In degree of each vertex is less than 2.
Hence R, admits linear prime labeling.

1<j<n-1

Example2.1G =R.
Vi w2 Vi vy V3
B 3 Ie & P e B ) B E)

fig—2.1

Theorem 2.2 Direct middle graph of Path,®n
>2) admits linear prime labeling.
Proof: Let G = M{P,} and let \,v2,---,Von.1 are
the vertices of G.
Here |V(G)| = 2n-1and |[E(G)| = 3n-4.
Define a function f : V= {0,1,2,---,2n-2} by

flw)=1i-1,i=1,2,---,2n-1
Clearly f is a bijection.
fiz 1s defined as follows

fist(va5-1 v2;)= 6]-4, 1<j<n-1.
ﬂ;:(vzj' v2}'+1): 6j-11 1SJ < n‘l.
fipi (V25 v2;22)= 61, 1<j<n-2.

Clearly f;;, is an injection.
gcin of (Vaj+2)

= ged of §, (Va; Vapa2)s Fror(Vae1 Vase2)}

= gcd of {6j+1, 6j+2}
1, Kj<n-2.
So,gcin of each vertex of in degree greater than
one is 1.
Hence M{R}, admits linear prime labeling.
Example 2.2 G = M(PR).
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fig—2.2

Theorem 6.2.3 Direct total graph of Path,Rn
>2) admits linear prime labeling.
Proof: Let G = T{R} and let \,Vv,,---,Von1 @re
the vertices of G.
Here |V(G)| = 2n-1 and |E(G)| = 4n-5.
Define a function f : V= {0,1,2,---,2n-2} by

fl(v) =i-1,i=1,2,---,2n-1
Clearly f is a bijection.

fi5: is defined as follows

fipi (V2521 v35) = 6j-4, I<j<n-1.
fim (V2524 "'-jz;f+1) = 6J-2, 1I<j<n-1.
froi(v2; "'-:'2}'+1) = 6j-1, 1<j<n-1.
froi(v2; U:;‘+:) = 6j+1, I<j<n-2.

Clgarlyﬁ;: is an injection.

gcin of (Vaj+2)

gcd of {fi; (v2; vaje2) Fimi(Vae1 Vaje2)}
gcd of {6j+1, 6j+2}

1,

1<j<n-2.
gcin of (Vojs1)
ged of {fi5, (va;-1 v2544) fimi (V) ¥220)}
ged of {6j-2, 6j-1}
1,

1<j<n-1.
So, gcin of each vertex of in degree greater than
one is 1.
Hence T{R}, admits linear prime labeling.

Example 2.3 G = T(R).
Va
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Theorem 6.2.4 Direct duplicate graph of path, P Example 2.5 G = TX(Py).

(n > 2) admits linear prime labeling.
Proof: Let G = D{R)} and let \,v,,---,vopare the
vertices of G.
Here |V(G)| = 2nand |E(G)| =2n-2.
Define a function f : \\= {0,1,2,---,2n-1} by

f(v) =i-1,i=1,2,---,2n
Clearly f is a bijection.
fiw1 is defined as follows
fro (V25 1"2;‘+1) = 6j-1,
f::::(”:j—l 1”2;‘+2) = 6j,
Clearly f,., is an injection.
In degree of each vertex is less than 2.

Hence R, admits linear prime labeling.
Example 2.4 G = D{P4}.

I<j<n-1
1<js<n-1

v V4 Vg vy
fig—2.4

Theorem 2.5 Direct 2- tuple graph of path,in

> 2) admits linear prime labeling.

Proof: Let G = F(P,) and let y,v,,---,vonare the

vertices of G.

Here |V(G)| = 2nand |E(G)| = 3n-2.

Define a function f : \\= {0,1,2,---,2n-1} by
flw)=i-1,i=1,2,---,2n

Clearly f is a bijection.

i 1s defined as follows

fio (V2521 1“:}') = 6j-4, I<j<n.
fis(V2i—1 ¥2541) = 6j-2, I<j<n-1
Fion (V25 v2}'+2) = 6j+1 I<j<n-1.

Clearly f;;,, is an injection.

gcin of (Voj+2)

gcd of {Jﬂ;:(”zj ”2;‘+2)7 fio (V2551 1"2}'+2)}
gcd of {6j+1, 6j+2}

1!

1<j<n-1

V1 V3 V3 V7

(2]
]
—
=
(2]
=

fig—2.5

Theorem 2.6 Direct Z- graph of path An > 2)
admits linear prime labeling.
Proof: Let G = Z(R) and let y,v,,---,vo, are the
vertices of G.
Here |V(G)] = 2nand |E(G)| = 3n-3.
Define a function f : V= {0,1,2,---,2n-1} by

flw)=i-1,i=1,2,---,2n
Clearly f is a bijection.
i 1s defined as follows

fim(V2j-1 V2541) = 6j-2, I<j<n-1
f:;:(t‘:,- U:;‘+1) = 6j-1 1<j<n-1.
f:;:(”zj U2}'+2) = 6j+1 I<j<n-1.

Clearly f;;, is an injection.

gcin of (Vj+1)

gcd of {f:;:(”:j—i ”2;‘+1)1 frm(v2; 1;'2;'+1)}
gcd of {6-2, 6j-1}

=1, I<j<n-1.
So, gcin of each vertex of in degree greater than
oneis 1.

Hence Z(R), admits linear prime labeling.
Example 2.6 G = Z(R).

v V3 V3 i

fig—2.6

Theorem 2.7 Direct shadow graph of path,
> 2) admits linear prime labeling.

Proof: Let G = D(P,)} and let w,v,,---,V2, are
the vertices of G.

So, gcin of each vertex of in degree greater thanpyq e IV(G)| = 2nand |E(G)| = 4n-4.

one is 1.
Hence F(P,) , admits linear prime labeling.
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Define a function f : V= {0,1,2,---,2n-1} by
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flw)=i-1,i=1,2,---,2n
Clearly f is a bijection.
fi5: is defined as follows

fipt(V2jo1 V2541) = 6j-2, I<j<n-1.
Fion (V25 1:'2}-+1) = 6j-1 I<j<n-1.
fint(V2j-1 V2;42) = 6j, 1<j<n-1.

o1 (V25 V2542) = 6j+1 I<j<n-1.

Cl_earlyf:;: is an injection.
gcin of (Voj+1)

= gcd of {f:;:(”:j—l ”2;‘+1)1 f:;:(”:j Ej2;‘+1)}
= gcd of {6}-2, 6j-1}
=1,

gcin of (Vzj+2)

gcd of {f:;:(”:}'q ”2}'+:)1 froi(v2; 1"2;‘+2)}
gcd of {6], 6j+1}
= 1’

I<j<n-1.

I<j<n-1.

So,gcin of each vertex of in degree greater than

oneis 1.
Hence D(P,) admits linear prime labeling.
Example 2.7 G = Dy(Pa)

V1 V3 V3 V7

0]

vy V4 Vg vy
fig—2.7

Theorem 2.8 Direct splitting graph of path,Rn

> 2) admits linear prime labeling.

Proof: Let G = P, and let y,v,,---,von are the

vertices of G.

Here |V(G)| = 2nand |E(G)| =3n-3.

Define a function f : \\= {0,1,2,---,2n-1} by

f(v) =i-1,i=1,2,---,2n
Clearly f is a bijection.
fiz1 is defined as follows

f::::(ijz;' rl5'2;.'+:|_) = 6j-1, I<j<n-1.
fimt(V2j-1 V2542) = 6, 1<j<n-1.
fiot (V27 v2542) = 6j+1, I<j<n-1.
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Clearly f;;, is an injection.

gcin of (Vaj+2)

= gcd of {f1 (951 Va;42) i (Va; ¥asu0)}

gcd of {6j, 6j+1}

=1, I<j<n-1.

So,gcin of each vertex of in degree greater than

oneis 1.

Hence JP,) admits linear prime labeling.

Example2.8 G = 3(P,)
Vi V3

Vs V7

fig—2.8
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